Binding of phosphate, aluminum fluoride, or beryllium fluoride to F-actin inhibits severing by gelsolin.
نویسندگان
چکیده
Actin exhibits ATPase activity of unknown function that increases when monomers polymerize into filaments. Differences in the kinetics of ATP hydrolysis and the release of the hydrolysis products ADP and inorganic phosphate suggest that phosphate-rich domains exist in newly polymerized filaments. We examined whether the enrichment of phosphate on filamentous ADP-actin might modulate the severing activity of gelsolin, a protein previously shown to bind differently to ATP and ADP actin monomers. Binding of phosphate, or the phosphate analogs aluminum fluoride and beryllium fluoride, to actin filaments reduces their susceptibility to severing by gelsolin. The concentration and pH dependence of inhibition suggest that HPO4(2-) binding to actin filaments generates this resistant state. We also provide evidence for two different binding sites for beryllium fluoride on actin. Actin has been postulated to contain two Pi binding sites. Our data suggest that they are sequentially occupied following ATP hydrolysis by HPO4(2-) which is subsequently titrated to H2PO4-. We speculate that beryllium fluoride and aluminum fluoride bind to the HPO4(2-) binding site. The cellular consequences of this model of phosphate release are discussed.
منابع مشابه
Formation of the stable myosin-ADP-aluminum fluoride and myosin-ADP-beryllium fluoride complexes and their analysis using 19F NMR.
The effects of aluminum fluoride and beryllium fluoride on smooth muscle myosin and its subfragments were studied. Mg(2+)-ATPase activity was inhibited in the presence of aluminum fluoride (beryllium fluoride). [3H]ADP bound to heavy meromyosin (HMM) in the presence of aluminum fluoride (beryllium fluoride) and was not dissociated after 3 days of dialysis demonstrating that [3H]ADP was trapped ...
متن کاملCharacterization of the aluminum and beryllium fluoride species which activate transducin. Analysis of the binding and dissociation kinetics.
Aluminofluoride and beryllofluoride complexes can activate the heterotrimeric G-proteins by binding next to GDP in the nucleotide site of their G alpha subunit and acting as analogs of the gamma-phosphate of a GTP. However, the exact structures of the activatory complexes in solution as well as those of the bound complexes in the nucleotide site are still disputed. We have studied, by monitorin...
متن کاملUse of stable analogs of myosin ATPase intermediates for kinetic studies of the "weak" binding of myosin heads to F-actin.
It is known that ternary complexes of myosin subfragment 1 (S1) with ADP and the Pi analogs beryllium fluoride (BeFx) and aluminum fluoride (AlF4-) are stable analogs of the myosin ATPase intermediates M* x ATP and M** x ADP x Pi, respectively. Using kinetic approaches, we compared the rate of formation of the complexes S1 x ADP x BeFx and S1 x ADP x AlF4- in the absence and in the presence of ...
متن کاملSecretion from permeabilised mast cells is enhanced by addition of gelsolin: contrasting effects of endogenous gelsolin.
Permeabilised rat mast cells were exposed to gelsolin and its N-terminal half (S1-3), proteins that sever actin filaments in a calcium-dependent and independent manner, respectively. Gelsolin and S1-3 induced a decrease in cellular F-actin content and an increase in the extent of the secretory response. The calcium sensitivities of both these effects were consistent with the differential calciu...
متن کاملThe actin filament-severing domain of plasma gelsolin
Gelsolin, a multifunctional actin-modulating protein, has two actin-binding sites which may interact cooperatively. Native gelsolin requires micromolar Ca2+ for optimal binding of actin to both sites, and for expression of its actin filament-severing function. Recent work has shown that an NH2-terminal chymotryptic 17-kD fragment of human plasma gelsolin contains one of the actin-binding sites,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 271 9 شماره
صفحات -
تاریخ انتشار 1996